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3.3 Kodaira embedding theorem

Theorem 3.3.1 (Kodaira embedding theorem I '54). A compact complex
manifold M is projective if and only if M could be equipped with a positive
line bundle.

Let {sP}7, (d, := dim H°(M, L?)) be any orthonormal basis of H%(M, L?)
with respect to the usual L:-norm (2.2.39). By Hodge theory, s!’s are holo-
morphic sections of LP.

Definition 3.3.2. Let
Bl, :={z € M : s(z) =0,Vs € H(M, L")}, (3.3.1)
which is called the base locus. The Kodaira map ®, is defined by

@, : M\BlL, — CP%~' 2w (sh(2):---: sg, (2))- (3.3.2)

Definition 3.3.3. Let L be a holomorphic line bundle.
It is called semi-ample if there exists py such that for all p > py, Bl, = 0.
It is called ample if it is semi-ample and ®,, is an embedding.
It is called very ample if Bl; = () and @, is an embedding.

It is obvious that L is ample if and only if there exists py such that for
all p > pg, L is very ample.

Theorem 3.3.4 (Kodaira embedding theorem II ’54). The holomorphic line
bundle L is ample if and only if it is positive.

For any s € H°(M, L?), we could write

dp
s = Zaisf, a; € C. (3.3.3)
i=1

Let v be the tautological line bundle over CP%~'. For ([I],2) € v, z € | C
C. we define o, € v* such that for any ([l], 2) € 7,

(o ), (12)) = 3z (3:3.4)

Easy to see that for any ¢ € +*, there exists s € H°(M, L?) such that ¢ = o,.
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Proposition 3.3.5. Let L be a semi-simple line bundle. Then for p > po,
o, M — CP%~! is holomorphic and

U, : 7" = LP, Po,> s (3.3.5)

defines a canonical isomorphism from ®,v* to LP over M.

Proof. Since s’s are holomorphic sections on LP, from (3.3.2), ®, is holo-

morphic.
Let
S=(s1(x), - ,sq (v)) € C. (3.3.6)
Then
(Ppos(x), ©p(Pp(2), S(x))) = (0(Pp()), (Pp(2), S(2)))

— Z a;st(x) = s(x). (3.3.7)

Thus ®;0,(z) = 0 if and only if s(z) = 0.

Since s and @70 are holomorphic sections of LF and ®;~*, ¥, is holo-
morphic. Thus it is continuous and the inverse of it is continuous.

The proof of this proposition is completed. O

Corollary 3.3.6. If L is ample, then it is positive.

Proof. 1f L is ample, then @, is an embedding. Since v* is positive, ®77* is
positive. By Proposition 3.3.5, L? is positive. So is L.
The proof of the corollary is completed. O

From now on, we assume that L is positive. From the Kodaira vanising
theorem (Theorem 3.1.14),

HYM,L*) =0 foranyq>0,p> 1. (3.3.8)

~ Let P, be the orthogonal projection from Q%*(M,LF) on to ker(9"" +
oY) = H*(M, LP). From the Kodaira vanishing theorem, if we only consider
the case for p large enough,

P, : Q" (M, LP) — H°(M, LP). (3.3.9)

Let
dP

Py(z,2') =Y sl(x)®@sl(x)" € L2 ® (L")}, (3.3.10)

=1
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Proposition 3.3.7. For any s € Q%*(M, LP),

(Pys)(x) = //EM P,(z,x")s(x")dx'. (3.3.11)

Here Py(z,2') is called the Bergman kernel associated with LP.
Proof. For any s € Q% (M, L?),

dp

() =3 ([ sty sty ) st
d,

- /M (Z 5; (1) ® Sf(f)*> -s(2')da’ = /’GM P,(z,2")s(a")dz'. (3.3.12)

i=1
The proof of this proposition is completed. O

Observe that LP ® (LP)* is a trivial line bundle. From (??), P,(z,z) is a
complex valued function on M. If we take the adjoint with respect to h™",
we have

Z |87 () |2 10 (3.3.13)

Proposition 3.3.8. For any x € M,
h® (2) = Py(x,2) At (). (3.3.14)

Proof. Under the isomorphism (3.3.5), for any holomorphic section s on L?,
from (3.3.7) and (3.3.13),

[{os(Pp(x)), (Pp(), S(2))) 10

(I)*Us Eyr = |‘78( ( ))|2 * = :
| lhq’ " [(@y(2), S(2)) 3
|3($)|%p —1 2
= = Py(z,x) " |s(x)|7, (3.3.15)
S st @)s "
The proof of this proposition is completed. O

The following theorem started from Tian 90 (also Bouche ’90, Ruan
'98) following the suggestion of Yau ’87 was first established by Catlin 97,
Zelditch "98.
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Theorem 3.3.9. For any k, k' € N, there exist Cy > 0 and b, € € (M,C),
0 <r <k such that for any p € N,

k
Py(z,z) = > bp(x)p"" < Chpp ! (3.3.16)
r=0 ER (M)
and
RL
bo = det <§> : (3.3.17)

Remark that Lu ’00 and Lu-Tian ’04 calculated by, bs, b3 used by Don-
aldson in his work on the existence of Kahler metrics with constant scalar
curvature.

Proposition 3.3.10. If L is positive, then it is semi-ample.

Proof. It RY > 0, by (3.1.50), by = det (RL/27r> > 0. From Theorem 3.3.9,

for p large enough, P,(z,z) > 0. Thus our proposition follows from (3.3.1)
and (3.3.13).

The proof of our proposition is completed. O

Theorem 3.3.11 (Tian *90-Ruan '98). Assume that (L, h%) is positive. Then
the induced Fubini-Study metric %(I);(CUFS) converges in € >°-topology to w =

V—1RE. For any | > 0, there exists C; > 0 such that
C

1
'—(I);(WFs) —w < —. (3.3.18)
L(M) D
Proof. From (1.2.34) and (2.1.46), we have
wps = V—1R" = /=190 log |0}, (3.3.19)

Thus from Proposition 3.3.8, (2.1.46) and (3.3.2),
Prwps = V—1001log |Pro,l7 -
= /=100 log|s(z)[?» — V—1901log P,(z, z)
=—1RY — /=190 log P,(x,x)
= pw — V/—1001log P,(x,z) (3.3.20)
From Theorem 3.3.9, we have
00log P,(z,z) = 00log(p" P,(z, 7)) = ddlogbo(x) + O(p~').  (3.3.21)

Thus our theorem follows directly from Theorem 3.3.9, (3.3.20) and (3.3.21).
0
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Proposition 3.3.12. The Kodaira map ®,is an immersion for p > 1.
Proof. From Theorem 3.3.11, for any [ > 0, there exists C; > 0 such that

1. C
~0*(gps) — g™ < 2 (3.3.22)
p oMy P

For v € T,M, v # 0, we have ¢g?™(v,v) > 0. From (3.3.22), for p large,
we have ®7(grs)(v,v) > 0. It means that grs(®.v, ®,v) > 0, which implies
that ®,v # 0.

The proof of our proposition is completed. O



